Reproducible research

Python
G. Durif (cNRS - IMAG - Univ Montpelier) Christelle Pierkot (cnrs - IR Data Terra)
Charles Elle Ra b|er (Univ Montpellier - IMAG) Son|a TIeO (CNRS - CEFE — Univ Montpellier)

June 23th 2021, Montpellier

Montpellier Bio-Stats (https://groupes.renater.fr/wiki/montpellier-biostat)

https://groupes.renater.fr/wiki/montpellier-biostat

1. Intro
2. Backward compatibility problem
3. Management of virtual environments

4. Literate Programming

Intro

Programming language created in 1989 by Guido van Rossum in the Netherlands.
The name Python comes from an homage to the TV series Monty Python's
Flying Circus.
The first public version of this language was published in 1991.
e Python runs on an interpreter system meaning that code can be
executed as soon as it is written — prototyping can be very quick.

e Python works on different platforms Windows, Mac, Linux, Raspberry
Pi, etc

e Python can be treated in a procedural way, an object-oriented way

or a functional way.

Backward compatibility problem

Python 2 vs Python 3

In February 1991, the first public version of Python (0.9) was made available to
the community. In 2000, the first Python 2.0 version is available.

Then in 2008, Python 3.0 and its syntax break is made available to the public
along with a new update of the 2.X branch (Python 2.6.1). And since then, the
two versions continue to coexist.

After more than 10 years of coexistence, Python 2 is on its way out. Moreover,
the python software foundation has announced the end of python 2.7
maintenance for 2020 (https://www.python.org/dev/peps/pep-0373/).

https://www.python.org/dev/peps/pep-0373/

Python 2 vs Python 3 : Exemple 1

The function print:

$ python2

Python 2.7.14 (default, Oct 31 2017, 21:12:13)
[GCC 6.4.0] on cygwin

Type "help", "copyright", "credits" or "license'
information.

>>> x = 5

>>> print "value=", x

value= 5

In Python 2, print is a command.

for more

Python 2 vs Python 3 : Exemple 1

$ python3
Python 3.6.4 (default, Jan 7 2018, 15:53:53)
[GCC 6.4.0] on cygwin

Type "help", "copyright", "credits" or "license" for more
information.

>>> x = 5

>>> print("value=", x)

value= 5

In Python 2, print is a function.

Parentheses become mandatory. Being a function, it can now be used in
functions by passing it as a parameter.

Easier to redirect the flow to a file rather than to the console.

Python 2 vs Python 3 : Exemple 2

Division of integers :

$ python2

Python 2.7.14 (default, Oct 31 2017, 21:12:13)

[GCC 6.4.0] on cygwin

Type "help", "copyright", "credits" or "license" for more
information.

>>> print(2/5)

0

>>>

Python 2 vs Python 3 : Exemple 2

$ python3

Python 3.6.4 (default, Jan 7 2018, 15:53:53)

[GCC 6.4.0] on cygwin

Type "help", "copyright", "credits" or "license" for more
information.

>>> print(2/5)

0.4

>>>

In Python 2, the division of two integers returns the Euclidean division of these
two integers.
In Python 3, we get the result of the floating-point division.

From Python to Python 3

Other exemples:

https:
//python.sdv.univ-paris-diderot.fr/21_remarques_complementaires/
Porting Guide:

https://docs.python.org/3/howto/pyporting.html
https://portingguide.readthedocs.io/en/latest/
https://py3c.readthedocs.io/en/latest/index.html

https://python.sdv.univ-paris-diderot.fr/21_remarques_complementaires/
https://python.sdv.univ-paris-diderot.fr/21_remarques_complementaires/
https://docs.python.org/3/howto/pyporting.html
https://portingguide.readthedocs.io/en/latest/
https://py3c.readthedocs.io/en/latest/index.html

Python 3.x

Status of Python branches

Branch Schedule Status First release End-of-life
master PEP 619 features 2021-10-04 8D

3.9 PEP 596 bugfix 2020-10-05 78D

3.8 PEP 569 bugfix 2019-10-14 2024-10
3.7 PEP 537 security 2018-06-27 2023-06-27
3.6 PEP 494 security 2016-12-23 2021-12-23
35 PEP 478 security 2015-09-13 2020-09-13

Spacing between new versions seems to have stabilized at one year intervals and
their lifespan is 5 years.

According to the timeline, all language versions below 3.6 have now reached their
end of life.

10

When and Why Upgrade Python 3.97

Some troubles:

1. Missing Packages;
2. Many bug fixes;

Source: https://medium.com/analytics-vidhya/
when-and-why-upgrade-python-3-9-2b2476daaddb

11

https://medium.com/analytics-vidhya/when-and-why-upgrade-python-3-9-2b2476daaddb
https://medium.com/analytics-vidhya/when-and-why-upgrade-python-3-9-2b2476daaddb

Backward Compatibility Problem in the same package

Give exemple (Matplotlib, Pandas...)

12

Package dependencies

FOI’ eg . Matp|0tllb — Credit: A.Legrand Talk

Matplotlib library
- —fomre e

Python dependencies

"\ Fake OS dependencies
’induced by package granularity

Real dependencies

13

Management of virtual

environments

Python virtual env

It can happen that you work on several projects at the same time, each requiring
different version libraries. E.g: for a project it will be Django 1.8 and the other

Django 2.1 .
So how to work on the same lib but with different versions?

It is possible thanks to the virtualenv package.

Python VirtualEnv

django==1.11
celery==4.0

14

Python virtual env

Create the project directory
$ mkdir myproject

Go into the project’s folder
$ cd myproject

Create a virtualenv named "env"

$ virtualenv env

Activate the environment using source
$ source env/bin/activate

Install project dependencies using a requirements file
$ pip install -r requirements.txt

15

Python virtualenv

By default, the command takes a single argument: the path to where the
environment should be created. Additional options allow for many aspects of the
environment to be configured, including the version of Python and whether
packages installed on the system should be linked into the environment.

Create a new virtual environment using Python 3

$ virtualenv --python=python3 path/to/env

16

Python virtualenv: Layout and Structure

Several conventions as to where to place environments, but one common
approach is to put it alongside the source folder for a program. For example, a
project might be checkout out to /myproject/project-src. If following the
convention, the environment would be placed at /myproject/env.

e bin is where Python and other environment executables are located
e lib is where Python packages will be installed
myproject

L— env

F— bin

F— dnclude
L— 1lib

17

Python virtualenv: Activating the virtual environment

“ L H

#

Activate a virtual environment
cd “/myproject
source ~/myproject/env/bin/activate

Check the active version of Python

(env)$ which python

#

Output

/home/myuser/myproject/bin/python

18

Freeze environment

#
$
#
$

Freeze environnement
pip freeze > requirements.txt‘
Install with requirement.txt

pip install -r requirements.txt

19

Anaconda Virtual Environment

ANACONDA

To create an environment in /envs/. No packages will be
installed in this environment.

$ conda create --name myenv

To create an environment with a specific version of Python:

“

conda create -n myenv python=3.6

To create an environment with a specific package:
conda create -n myenv scipy
-- or

conda create -n myenv python

®H L H LA H

conda install -n myenv scipy
20

Anaconda Virtual Environment

ANACONDA

To create an environment with a specific version of Python
and multiple packages:

$ conda create -n myenv python=3.6 scipy=0.15.0 astroid babel

To create an environment with yml file

$ conda env create -f environment.yml

To activate an environment:

$ conda activate myenv

Export your active environment to a new file:

$ conda env export > environment.yml

21

Anaconda Navigator

O Anaconda Navigator - o x
fie relp
1 Home i a insl v| chemels update ndex.
base (r > Neme v T Description Version &
_ipyw_lab_nb_ex... O Aconfguration metapackage for ensbling anacond 0
O Configurable, python 2+3 compatible sphinx theme. 0712
N Learning
snaconds O Simpifies packsge management snd deployment o snaconds 2 201907
snaconda-cient O nacondsorg command line clint Gbrary 172
Community
snaconde-project O Tool for encapsulating, running, and reproducing dats science projects 2 083
sty O python .1 lisrary with s Focus on perFormance and a pythoric a5 2 0260
astroid O Asbstract syntax tre python with inference support. 2
astropy O Community-developed python library for astronomy 2 32
< @ somicwites O AcomicHie wries. 130
o Attrs i the python package that wil bring back the jy of writng classes by releving youFrom »
[e o the drudgery of implementing object protocols (ska dunder methods). % -
babe O utiites o internationaize and localize python aplications
backeall O specifications For callback functions passed in to an api 010
backports o 10
backportsfunctoo.. () Backpert of Functootsnu_cache From sython 3.3 s published at sctivestate. 15
cumentation
back o tof new Features in python's s module o1
backportsshutil_g... O Abackport of the get_terminal_size Function from python 3.3's shutil 100
DeveloperBlog
baciportstemptie O
Yy o 2 <]
Creste Imoort 7 i malls

Literate Programming

Jupyter notebook

https://jupyter.org/

— Jupyter Untitled <= Notebook name:dcnanges)

File Edit View nsert Cell Kemel Help Menu bar
+ 3 A B 4+ ¥ MEn B C M| coke 1 Toolbar
In[1 Code cell

23

https://jupyter.org/

Jupyter notebook

In [14]:

out[14]:

Plotting data and linear model

«— Text
Now we want to plot the train data and teachers (marked as dots).

With line we represents the data and predictions (linear model that we found):

Visualises dots, where each dot represent a data exaple and corresponding teacher
plt.scatter(X_train, y_train, color="'black")

Plots the Linear model

plt.plot(X_train, regr.predict(X_train), color='blue', linewidth=3);
plt.xlabel('Data")

plt.ylabel('Target")

<matplotlib.text.Text at @xbieibecc>

400 \\ Code

Y Plot

-015 -010 -0.05 0.00 0.05 010 015 020

Data 24

References

	Intro
	Backward compatibility problem
	Management of virtual environments
	Literate Programming
	References

