
Reproducible research
Good practices and useful information

G. Durif (CNRS – IMAG – Univ Montpellier) Christelle Pierkot (CNRS – IR Data Terra)

Charles Elie Rabier (Univ Montpellier – IMAG) Sonia Tieo (CNRS – CEFE – Univ Montpellier)

June 23th 2021, Montpellier

Montpellier Bio-Stats (https://groupes.renater.fr/wiki/montpellier-biostat)

1

https://groupes.renater.fr/wiki/montpellier-biostat


Outline

1. Introduction

2. In the lab (no computations)

3. Reproducibility with computers

Software and programing

Software environment

4. Data

5. Scientific publication

6. Conclusion

2



Introduction



Resources

Desquilbet, L., Granger, S., Hejblum, B., Legrand, A., Pernot, P., Rougier, N.P., de Castro
Guerra, E., Courbin-Coulaud, M., Duvaux, L., Gravier, P., Le Campion, G., Roux, S., Santos, F.,
2019. Vers une recherche reproductible. Unité régionale de formation à l’ information
scientifique et technique de Bordeaux. 1

The Turing Way Community, Becky Arnold, Louise Bowler, Sarah Gibson, Patricia Herterich,
Rosie Higman, … Kirstie Whitaker. (2019, March 25). The Turing Way: A Handbook for
Reproducible Data Science (Version v0.0.4). Zenodo. 2

Hejblum, B.P., Kunzmann, K., Lavagnini, E., Hutchinson, A., Robertson, D., Jones, S.,
Eckes-Shephard, A., 2020. Realistic and Robust Reproducible Research for Biostatistics. 3

1https://hal.archives-ouvertes.fr/hal-02144142 and https://github.com/rr-france/bookrr
2http://doi.org/10.5281/zenodo.3233986 and https://github.com/alan-turing-institute/the-turing-way
3https://doi.org/10.20944/preprints202006.0002.v1 and https://hal.inria.fr/hal-03100421

3

https://hal.archives-ouvertes.fr/hal-02144142
https://github.com/rr-france/bookrr
http://doi.org/10.5281/zenodo.3233986
https://github.com/alan-turing-institute/the-turing-way
https://doi.org/10.20944/preprints202006.0002.v1
https://hal.inria.fr/hal-03100421


Reproducible research

• Many definitions...

• “A way of doing science so that scientific experiments, discoveries,
results, etc. can be easily reproduced (done again), to be confirmed,
or to be built on for the next study.”

4



Reproducibility, replicability, robustness, generalization

Ref: The Turing Way Community and Scriberia (2019) 5



Different kind of reproducibility (for different kind of sciences)

• experimental reproducibility (without computation, at lab bench)

• reproducibility with computers

• experimental reproducibility (“how to get similar results?”)

• statistical reproducibility (“how to control randomness?”)

• computational reproducibility (“how to get the exact same results?”)

→ more and more scientific results depends on some computer data
processing (era of “computational” sciences)

6



Data

• “Open as much as possible and close as much as necessary”

• Management, publication, annotation (metadata), archiving

By SangyaPundir - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=53414062

• Source code = specific data (with specific consideration, c.f. later) 7

https://commons.wikimedia.org/w/index.php?curid=53414062


Software

• Computations are done by processing data through a software

• To run a software: you need a source code (or a binary) and an
environment

INPUT
data

−→

SOFTWARE
source code

binary
ENVIRONNEMENT

Operating System (OS)
compiler/interpreter

user interface

−→ OUTPUT
result

8



Reproducible research = a requirement...

An increasing requirement for the scientist

• to publish (more and more scientific journals require sources to
reproduce published results)

• to get financing and grants (sometimes)

• etc.

9



...but also (and almost) a good practice

A good practice to be adopted

• to make your life easier (to avoid the famous “how did I do that five
days/weeks/months/years ago?”)

• to do quality research work (and avoid errors or frauds)

• to do incremental research (that can be used and built on in the
future)

10



Open science

• “Movement to make scientific research (including publications, data,
physical samples, and software) and its dissemination accessible to
all levels of an inquiring society, amateur or professional” (Wiki,
2021c)4

• French comity for open science: https://www.ouvrirlascience.fr

4https://en.wikipedia.org/wiki/Open_science
11

https://www.ouvrirlascience.fr
https://en.wikipedia.org/wiki/Open_science


In the lab (no computations)



The lab notebook: good practice to log every experiments

Paper version:

• unreadable?

• missing or empty?

• when correctly filled: no index to find information (and no CTRL+F)

From eLabFTW (https://www.elabftw.net) presentation by Nicolas Carpi (Curie Institute, France)

12

https://www.elabftw.net


Electronic lab notebook (ELN) software

• Experiment description/annotation and metadata (including data
file, source code, machine configuration, etc.)

• Timestamping (registration of experiment date and time)

• Export to text/pdf/etc. (for readability, publication, archiving, etc.)

• Legal issue: mecanism to authenticate results and prevent
falsification? (e.g. to proove anteriority)

• Proprietary/commercial solutions vs open source software ?

13



Resources regarding ELN

• Survey regarding ELN at CNRS (Léon and Libri, 2020)

• Open-source example: elabFTW5 (CARPi et al., 2017)

• Meta-study (Kanza et al., 2017)

• Use case study (Oleksik et al., 2014)

• (Fairly) complete list (Huchet, 2021, webpage)

5https://www.elabftw.net
14

https://www.elabftw.net


Reproducibility with computers



Reproducibility with computers (glossary may vary)

experimental
reproducibility

similar input (data)
+

similar experimental protocol
→ similar results

statistical
reproducibility

same input (data)
+

same analysis
→ same conclusions6

computational
reproducibility

similar input (data)
+

same code/software
+

same software environment

→ exact same results7

6independently from (random) sampling variability
7bit-wise, i.e. bit-by-bit similarity 15



Experimental reproducibility with computers

data generation
simulation
collection

−→ data pre-processing
preparation

−→
data processing

analysis
result generationy

result presentation
figure generation
table generation
article writing
slide writing

←− result post-processing
formatting

16



Experimental reproducibility with computers

• Requirements: detailed experimental protocol, including all data
generation process, data pre-processing, data processing (i.e.
analysis) and result post-processing

• Good practice: publish the source code (e.g. scripts, notebooks, etc.)
for your entire analysis8 pipeline from data preparation to result
formatting (including figures generation)

8and not just the source code of the methods/approaches that you developed

16



Statistical analysis and statistical reproducibility

Careful with common bad practices

• Data manipulation/tempering (justified or not) without explanation
• selecting/removing datasets where your method performs well/poorly
• removing observations of a dataset to improve results

• Method “over-fitting” on test/validation samples

• Unexplained parameter or hyper-parameter calibration/tuning

• Over-trusting p-values and test result significance without
controlling the test power (why α = 5% not 4.8% nor 5.2% ?)

• Not accounting for confounding factors or hidden effects (use
randomization, blind control, sensitivity analysis, etc.) 17



Computational reproducibility

Requirements:
• input data
• source codes
• detailed software environment9 (with corresponding versions)

WHY?10
• to detect mistakes or bugs more easily
• to understand and support/trust surprising or cutting-edge results
• to facilitate evolution and improvements11

9which compiler was used to compile your binary program/interpreter/compiler?
10“Why experimental or at least statistical reproducibility is not enough????”
11especially when you stop working on the subject or maintaining the project 18



Computational reproducibility

This entire pipeline should be reproducible in a deterministic9 way to
achieve computational reproducibility.

INPUT
data

−→

SOFTWARE
source code

binary
ENVIRONNEMENT

Operating System (OS)
compiler/interpreter

user interface

−→ OUTPUT
result

9keep and store seeds when simulating random data
18



Software and programing
(writing codes)

19



Choose a licence for your codes/softwares

• It governs the possibility to use, modify or redistribute a software

• It helps to identify clear authorship/copyright10

• Without a license: fuzzy and unclear (generally “all rights reserved”
but you are never sure11)

• Recommandation: use a free12 and open-source license

• use a software specific license13

10depending on legal consideration, varying from one country to another
11“Was it forgotten or a deliberate choice?”
12as in “free” and not as in “gratis” (proprietary software can be gratis)
13e.g. Creative Commons lciense (https://creativecommons.org/licenses/) are for
contents not softwares 20

https://creativecommons.org/licenses/


Why a free and open-source (FOSS) licence?

WHY?

• your code/software is available for the community to use it, to
improve it, to redistribute it14

• your code/software can be more easily used in other research works
• you cannot15 be sure of what a proprietary closed software really does
• a good practice for open science and reproducible research
• a recommendation/obligation for publicly funded research work in
France (Gruson-Daniel and Jean, 2021)

Note: you do not lose your authorship
14e.g. when your project ends and you stop maintaining your code/software
15at least not without huge difficulties 21



Why a free and open-source (FOSS) licence?

Different types of FOSS license14 (see Laurent, 2004)

• permissive (MIT, Apache, BSD, etc.)

• copyleft (GPL, etc.)

Resources

• https://choosealicense.com/

• https://opensource.org/licenses

• https://www.gnu.org/licenses/license-list.en.html

• Distinction “free” vs “open source” (Stallman, 2009)
14The choice depends on your philosophy, your code/software purpose and user target audience 21

https://choosealicense.com/
https://opensource.org/licenses
https://www.gnu.org/licenses/license-list.en.html


Good practice for software development and programming

• The code should be human readable15 and easily understandable
(use comments, code presentation and formatting)

Experiment: read your (5 weeks/months/years) old codes, are you sure
that you will understand it? (worst with code written by others)

• Use a versioning system (e.g. git16) to manage your code
evolution/version and for collaborative development

15being machine readable is necessary for the code to work but not sufficient
16Ref: https://git-scm.com/book/

22

https://git-scm.com/book/


Good practice for software development and programming

• Implement automatic tests15 (e.g. unit tests) for each new
function/module/etc. (and not afterward) to verify your
implementation and results and avoid breaking your code16

• Write a documentation17 for your code/package/library

15almost all programming languages offer testing functionality natively or in dedicated
library (e.g. testthat in R, pytest in Python)
16never trust yourself, you will implement bugs
17almost all programming languages offer inline code documentation functionality
natively or in dedicated library (e.g. roxygen2 in R, docstring in Python)

22



Good practice for software development and programming

• Publish your source codes (preferably on a software forge)

• Archive your source codes (because your software forge or webpage
can disappear15)

References: Leprevost et al. (2014), Foord (2017), Coding best practices
(Wiki, 2021a)

15See Agata et al. (2014) for instance

22



Software forge

An online server and/or website offering code/software development and
management functionalities

• versioning

• collaborative work and planning

• issue, feedback, bug reports

• software release/publication

• continuous integration

• possibility to get a publication identification like a DOI16

• etc.
16eventually externally with https://zenodo.org/ 23

https://zenodo.org/


Examples of software forge

• gitlab: free and open-source git forge hosting software (different
hosts are available: in the academic world, e.g.
https://plmlab.math.cnrs.fr, https://gitlab.inria.fr, or
abroad, e.g. https:gitlab.com)

• https://github.com: very popular git forge with gratis and
commercial solutions to host development projects

• https://bitbucket.org: another git forge with gratis and
commercial solutions to host development projects

Discontinued17 forges: Gitorious, Google code, Inria Gforge
17Disclaimer: it happens! 24

https://plmlab.math.cnrs.fr
https://gitlab.inria.fr
https:gitlab.com
https://github.com
https://bitbucket.org


Publication ̸= archiving

• What happens if your software forge (or the webpage where you host
your code) disappear ?

• The Software Heritage initiative (https://www.softwareheritage.org)
“Our ambition is to collect, preserve, and share all software that is
publicly available in source code form. On this foundation, a wealth of
applications can be built, ranging from cultural heritage to industry and
research.”

→ Simple deposit procedure from a software forge18

18https://archive.softwareheritage.org/save/
25

https://www.softwareheritage.org
https://archive.softwareheritage.org/save/


Code showcases/demos and result formatting/presentation

Recommendations: use a text file-based system19

• Documented code scripts

• Raw text with formatting markup (Markdown, LaTeX, etc.): readable
even without the formatting software, exportable in different format

• Literate programming (Knuth, 1984): executable code chunks along
with additional formatted text contents and explanations, like
notebooks or Org-mode

19opening Office or PDF files can be a problem in the future, because of version conflict,
discontinued software, etc.

26



Notebook

• Requirement: an interpreter like jupyter (https://jupyter.org/)

• Ideal to present results, figure/graph generation, code demos

27

https://jupyter.org/


Notebook

Limits:

• Suitable/convenient to run (heavy) computations20?

• Limited readability without the interpreter21: json based text format
not easily readable in raw form if problem with interpreter

20compared to scripts
21compared to alternative like Markdown, Org-mode

27



Workflow system

Ref: https://www.nextflow.io/

Describe your complete workflow
analysis with elementary bricks

Example: nextflow22, snakemake23, etc.
22https://www.nextflow.io/
23https://snakemake.readthedocs.io/en/stable/ 28

https://www.nextflow.io/
https://www.nextflow.io/
https://snakemake.readthedocs.io/en/stable/


Writing scientific material

• Final rendering of results (figures, tables, article, presentation)
should also be reproducible!

• Problem with ”what you see is what you get” tools like the Office Suite
or alternatives (the information is lost without the software,
potentially proprietary)

• Writing with markup languages (e.g. LaTeX or Markdown): content is
readable and editable even without the rendering

29



Software environment
(and how to control it)

30



What is it?

The detailed description of the entire software stack (versions,
availability) that is necessary to run a code/software

• Operating System (OS)

• Compiler and/or Interpreter (including
the options used to compile/run the
code)

• Additional libraries, external packages

• Hardware architecture on which the
code was run (or can be run) Ref: https://commons.wikimedia.org/wiki/File:

Operating_system_placement.svg
31

https://commons.wikimedia.org/wiki/File:Operating_system_placement.svg
https://commons.wikimedia.org/wiki/File:Operating_system_placement.svg


Why is it necessary to control it?

• Programming languages24, library implementations, Operating
Systems (OS) evolve

• Potential retro-compatibility issues (e.g. try to run old R or Python
codes with recent interpreters, or compile old codes with recent
compilers)

• Different implementations for standard operations (e.g. the different
implementations for pseudo-random number generators, or for the
linear algebra librarie BLAS25: OpenBLAS, Atlas, Intel MKL, etc.)

• “What compiler was used to compile your compiler?”
24R 2.x.x, 3.x.x, 4.x.x, Python 2.x.x, 3.x.x, C++ 11, 13, 17, 20, etc.
25used by R, Numpy 32



How to control your software environment?

• Describing your entire software and hardware stack? → cumbersome

• Container system (e.g. Docker, Singularity)

• Package manager system

• other?

33



Container

• Operating-system-level virtualization

• Scriptable recipe to build executable versatile and configurable
OS-like environments based on standard images, where you can run
your programs

• Examples of systems: Docker26, Singularity27

26https://www.docker.com/
27https://sylabs.io/singularity/

34

https://www.docker.com/
https://sylabs.io/singularity/


Container

Ref: https://geekflare.com/fr/docker-vs-virtual-machine/

34

https://geekflare.com/fr/docker-vs-virtual-machine/


Container

Advantages
• Easy definition and control of
your software environment

• Possibility to publish (on your
website, or on
Docker/Singularity hubs) your
containers so that other people
can run your codes/programs in
the same environment as you
did (independently from their
OS)

Limits
• Container build is generally not
reproducible in a deterministic
way

• Container recipe rarely follows
reproducible rules and good
practices.

34



Reproducible container?

FROM ubuntu:20.04
RUN apt-get update

&& apt-get upgrade -y
&& apt-get install -y ...

...

35



Reproducible container?

• ubuntu:20.04: regularly modified image

• apt-get update and apt-get install: install current version of
packages

• Good practices: choose a stable image (and the smallest possible,
e.g. alpine), include only the necessary libraries (e.g. no graphics
libs if not used), avoid system updates26

26Disclaimer: we are talking about using container for reproducible purpose. In other
context (e.g. to provide a web service, up-to-date libs/softwares are mandatory

35



Package manager

• specific to a language
• e.g. pip27/conda28 for Python, CRAN29/Bioconductor30 for R
• limits: management of package version? hidden requirements?
evolution of the language?

• for a complete system
• e.g. Guix, Nix, Debian
• Example: Guix31 to generate reproducible image (bit-by-bit), that store
the complete dependence graph with all software versions

27https://docs.conda.io
28https://pypi.org/
29https://cran.r-project.org/
30https://www.bioconductor.org/
31https://guix.gnu.org/ 36

https://docs.conda.io
https://pypi.org/
https://cran.r-project.org/
https://www.bioconductor.org/
https://guix.gnu.org/


Note on proprietary compilers/libraries

• GPU (Graphical Processing Units) computing: CUDA library for Nvidia
GPUs32, used by PyTorch, TensorFlow

• Intel compilers (ICC) and algebra library (MKL)

→ fast computations vs reproducible computations?

32trending in the machine learning community and elsewhere

37



Data



Ressources

• EOSC: https://eosc-portal.eu

• RDA: https://rd-alliance.org

• Certified data repositories: https://www.coretrustseal.org/
why-certification/certified-repositories/

• Comité “Ouvrir la Science” (CoSO):
https://www.ouvrirlascience.fr

38

https://eosc-portal.eu
https://rd-alliance.org
https://www.coretrustseal.org/why-certification/certified-repositories/
https://www.coretrustseal.org/why-certification/certified-repositories/
https://www.ouvrirlascience.fr


Why managing your data?

• Data generation: accumulation over the years

• For yourself and for others33 (important for reproducibility)

• Data format: https://facile.cines.fr

33What happen to your scientific data when your project is over?

39

https://facile.cines.fr


How?

• Data management plan (PGD)34

• Data repositories35

34https://www.ouvrirlascience.fr/
plan-de-gestion-de-donnees-recommandations-a-lanr/
35https://hal.archives-ouvertes.fr/hal-02928817

40

https://www.ouvrirlascience.fr/plan-de-gestion-de-donnees-recommandations-a-lanr/
https://www.ouvrirlascience.fr/plan-de-gestion-de-donnees-recommandations-a-lanr/
https://hal.archives-ouvertes.fr/hal-02928817


Preserve and share

• value of your data?

• how data are collected/generated?

• time for data availability and duration of conservation?

• sharing with who? under which license? (share as much as possible,
close as much as necessary)

• data cost: economical and environmental

41



FAIR principles36

By SangyaPundir - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=53414062

36See https://www.go-fair.org/fair-principles/ and
https://teamopendata.org/t/open-data-et-fair-deux-paradigmes-differents/220

42

https://commons.wikimedia.org/w/index.php?curid=53414062
https://www.go-fair.org/fair-principles/
https://teamopendata.org/t/open-data-et-fair-deux-paradigmes-differents/220


Publication ̸= archiving

• Publication: make your data accessible to the community

• Archiving: ensure your long-term data durability

• Storing cost? maybe OK during the project, but after? how to finance
it?

43



Scientific publication



Open access

• “a set of principles and a range of practices through which research
outputs are distributed online, free of cost or other access barriers”
Wiki (2021b)37

• open access overview (Suber, 2007)

• open science principles (Swan, 2012, Unesco)

• publisher of open access journals: https://www.openscience.fr

37https://fr.wikipedia.org/wiki/Libre_acc%C3%A8s_(%C3%A9dition_scientifique) and
https://en.wikipedia.org/wiki/Open_access (complementary)

44

https://www.openscience.fr
https://fr.wikipedia.org/wiki/Libre_acc%C3%A8s_(%C3%A9dition_scientifique)
https://en.wikipedia.org/wiki/Open_access


HAL (https://hal.archives-ouvertes.fr/)

“HAL is an open archive where authors can deposit scholarly documents
from all academic fields.”

• Open repository to upload and index any publication, preprint, etc.,
including metadata and contents

• Possible to define an embargo on the contents (that is indexed but
not available for a given time)

• Multiple sub-repositories: Inria38, INRAE39, TEL40 (PhD manuscripts)
38https://hal.inria.fr
39https://hal.inrae.fr
40https://tel.archives-ouvertes.fr

45

https://hal.archives-ouvertes.fr/
https://hal.inria.fr
https://hal.inrae.fr
https://tel.archives-ouvertes.fr


How do scientific journals address science’s reproducibility issues ?

A small tour of scientific journals ...

46



PLOS journals (interdisciplinary journals)

PLOS publishes a suite of influential Open Access journals across all areas
of science and medicine

Publication fees :
Plos One (1749 dollars), Plos Genetics (2575 dollars), Plos Computational
Biology (2575 dollars) . . .

47



PLOS journals (interdisciplinary journals)

“PLOS is committed to ensuring the availability of materials that underpin
research. Sharing materials encourages reuse and facilitates
reproducibility.”

“PLOS reserves the right to issue a correction, expression of concern, or
retraction if unreasonable restrictions on sharing are discovered after
publication.”

“All data and related metadata underlying the findings reported in a
submitted manuscript should be deposited in an appropriate public
repository”

48



PNAS and Genome Research (interdisciplinary journals)

“Authors must make materials, data, and associated protocols, including
code and scripts, available to readers upon publication. Authors should
deposit data in community-approved public repositories prior to
publication”

“Genome Research will not consider manuscripts in which the data used
and reported in the paper that are required for reproducibility are not
freely available in either a public database or on the Genome Research
website”

49



Nature journals (interdisciplinary journals)

“Nature Portfolio journals aim to improve the transparency of reporting
and reproducibility of published results across all areas of science”

“A condition of publication in a Nature Portfolio journal is that authors
are required to make materials, data, code and associated protocols
promptly available to readers without undue qualifications”

50



Bioinformatics

“Bioinformatics is aligned with the general movement towards open FAIR
data. All data on which the conclusions given in the publication are based
must be publicly available in stable public repositories.”

51



JRSSB (a statistical journal)

“Published papers should, where possible, be accompanied by the data
and computer code used in the analysis. Both data and code must be
clearly and precisely documented, in enough detail that it is possible to
replicate all results in the final version of the paper”

52



JASA (a statistical journal)

“To enhance the reproducibility of published research, manuscripts
undergo reproducibility review …”

53



Reproducibility Review Form (JASA)

1. Data availability: data available in a public repository ?

2. Data integrity: data provided with the submission match with data originally
available to the authors ?

3. Data documentation and usability
4. Code availability: code available in a public repository ?

5. Code clarity: code in a form that can be used and understood by others ?

6. Documentation of workflow: clear documented workflow (including data
preparation/cleaning steps and analyses) to reproduce the results ?

7. Reproducibility
• without having run the code, any concerns that the code would not reproduce
the key results ?

• based on having run the code, did the workflow allow you to reproduce the
key results? 54



The journals “Peer Community in” (PCI)

The functioning of PCI41

41See the introduction video at https://www.youtube.com/watch?v=4PZhpnc8wwo
55

https://www.youtube.com/watch?v=4PZhpnc8wwo
https://www.youtube.com/watch?v=4PZhpnc8wwo


The journal “Rescience”

“Reproducible Science is good. Replicated Science is better”

• ReScience C = platinum open-access peer-reviewed journal (100%
free)

• Explicit replication of already published research
• New implementation of a replicated computational results from the
literature

Ten Years Reproducibility Challenge (special issue from 2020)

• Invitation for researchers to try to run their old code created for a
publication (≥ 10 years)

• Try to make your old code work on modern hardware/software in
order to check if you obtain the same results 56



Conclusion



Take-home message

Reproducible research... a journey!

• necessary and useful to do incremental research, for others but also
for yourself

• an investment: heavy need to change the behaviors and practices in
science (regarding experiments, publications, management)

57



Message to senior researchers

• Change will come from the top (young researchers follow what is
expected to advance in their career)

• Reproducible research is not compatible with publication race

• Improve scientific training and career management

58



Environmental questions

Environmental cost of computations, data storage?

59



Thank you for you attention

Questions?

• https://groupes.renater.fr/wiki/montpellier-biostat

59

https://groupes.renater.fr/wiki/montpellier-biostat


References



Agata, T., Y. Miyata, E. Ishita, A. Ikeuchi, and S. Ueda (2014, December). Life
span of web pages: A survey of 10 million pages collected in 2001.
Proceedings of the ACM/IEEE Joint Conference on Digital Libraries,
463–464.

CARPi, N., A. Minges, and M. Piel (2017, April). eLabFTW: An open source
laboratory notebook for research labs. Journal of Open Source
Software 2(12), 146.

Foord, M. (2017, May). 30 best practices for software development and
testing. https://opensource.com/article/17/5/30-best-practices-
software-development-and-testing.

Gruson-Daniel, C. and B. Jean (2021, January). étude relative à l’ouverture
des codes sources au sein de l’Enseignement Supérieur et de la

59



Recherche (ESR) : Considérations en termes d’usage et de valeur.
Research Report, INNO3 ; Etalab ; Comité pour la Science Ouverte.

Huchet, B. (2021). 2021 Review of the Best Electronic Laboratory Notebooks
| Labs Explorer. https://www.labsexplorer.com/c/2021-review-of-the-
best-electronic-laboratory-notebooks_222.

Kanza, S., C. Willoughby, N. Gibbins, R. Whitby, J. G. Frey, J. Erjavec,
K. Zupančič, M. Hren, and K. Kovač (2017, May). Electronic lab notebooks:
Can they replace paper? Journal of Cheminformatics 9(1), 31.

Knuth, D. E. (1984). Literate programming. The Computer Journal 27(2),
97–111.

Laurent, A. M. S. (2004, August). Understanding Open Source and Free
Software Licensing: Guide to Navigating Licensing Issues in Existing &
New Software. ”O’Reilly Media, Inc.”.

59



Léon, N. and D. Libri (2020). Analyse de l’enquête sur les cahiers de
laboratoire électroniques au CNRS. Technical report, CNRS.

Leprevost, F. d. V., V. C. Barbosa, E. L. Francisco, Y. Perez-Riverol, and P. C.
Carvalho (2014, July). On best practices in the development of
bioinformatics software. Frontiers in Genetics 5.

Oleksik, G., N. Milic-Frayling, and R. Jones (2014, February). Study of
electronic lab notebook design and practices that emerged in a
collaborative scientific environment. In Proceedings of the 17th ACM
Conference on Computer Supported Cooperative Work & Social
Computing, CSCW ’14, New York, NY, USA, pp. 120–133. Association for
Computing Machinery.

Stallman, R. (2009, June). Viewpoint: Why ”open source” misses the point
of free software. Communications of the ACM 52(6), 31–33.

59



Suber, P. (2007). Open Access Overview.
Swan, A. (2012). Policy Guidelines for the Development and Promotion of
Open Access. UNESCO.

The Turing Way Community and Scriberia (2019, July). Illustrations from the
Turing Way book dashes.

Wiki (2021a, May). Coding best practices. Wikipedia.
Wiki (2021b, June). Open access. Wikipedia.
Wiki (2021c, June). Open science. Wikipedia.

59


	Introduction
	In the lab (no computations)
	Reproducibility with computers
	Software and programing
	Software environment

	Data
	Scientific publication
	Conclusion
	References

